Name:	Date:	Period:					
Worksheet 3.R: Building Linearity Review Chapter 3							
Learning Goal: I can write an equation for a direct variation situation. (8.EE.5, 8.EE.6, 8.F.2, 8.F.4)							
1. A direct variation relationship is: Linear (Circle the correct answer.)	Non-Line	ar					
 In a direct variation relationship, the line has a (Hint: This is the same as slope, makes the graph look like a straight line.) 							
3. In a direct variation, the line is called(Hint: The y-intercept of the graph is at (0, 0).)						

Remember:

The slope for each direct variation can just be found by putting y over x. So the slope is $\frac{y}{x}$.

The equation for each direct variation will always be in the form **y=mx**. The only thing that will change is *m*, which is the slope.

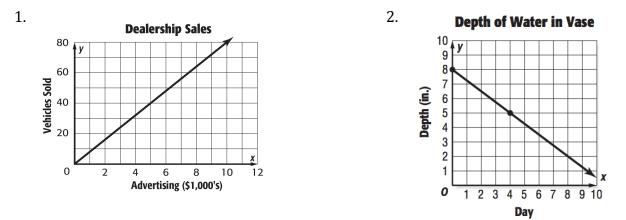
For Exercises 3–4, determine whether each linear function is a direct variation. If so, state the constant of variation (the slope).

3.	Hours, x	11	12	13	14
	Distance, y (miles)	154	167	180	193

	Age, x	8	9	10	11
4.	Grade, y	3	4	5	6

For Exercises 5–7, *y* varies directly with *x*. Write an equation for the direct variation. Then find each value.

5. If *y* = 8 when *x* = 3, find *y* when *x* = 45.


6. If y = -4 when x = 10, find y when x = 2.

7. If *y* = 27 when *x* = 8, find *y* when *x* = 11.

Name: _____ Date: ____ Period: ____ Worksheet 3.R: Building Linearity Review | Chapter 3

Learning Goals: - I can write an equation for a direct variation situation. (8.EE.5, 8.EE.6, 8.F.2, 8.F.4) - I can find the slope of a line. (8.EE.5)

Find the constant rate of change and interpret it's meaning.

Learning Goal: I can find the unit rate for a given situation. (7.RP)

Use unit rates to help you solve the following situation.

1. A brownie recipe calls for ½ cup of vegetable oil to make 12 servings. How much vegetable oil is required to make 18 servings?

2. A pasta salad recipe that serves 8 people requires 12 ounces of pasta. How many ounces are required to make enough to serve 50 people?

Learning Goal: I can find the slope of a line. (8.EE.5)

Find the slope of the line that crosses the following points. (Hint: use slope formula)

1. (-2, 5) and (1, -7)

- 2. (7, 4) and (-3, -3)
- 3. (3, 3) and (-7, -4)